Online Scalable Streaming Feature Selection via
Dynamic Decision

PENG ZHOU, SHU ZHAO, and YUANTING YAN, Key Laboratory of Intelligent Computing and
Signal Processing (Anhui University), Ministry of Education, School of Computer Science and Technology,
Anhui University

XINDONG WU, Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Tech-
nology), Ministry of Education, Hefei University of Technology, and Mininglamp Academy of Sciences,
Mininglamp Technology

Feature selection is one of the core concepts in machine learning, which hugely impacts the model’s perfor-
mance. For some real-world applications, features may exist in a stream mode that arrives one by one over
time, while we cannot know the exact number of features before learning. Online streaming feature selection
aims at selecting optimal stream features at each timestamp on the fly. Without the global information of the
entire feature space, most of the existing methods select stream features in terms of individual feature infor-
mation or the comparison of features in pairs. This article proposes a new online scalable streaming feature
selection framework from the dynamic decision perspective that is scalable on running time and selected
features by dynamic threshold adjustment. Regarding the philosophy of “Thinking-in-Threes”, we classify
each new arrival feature as selecting, discarding, or delaying, aiming at minimizing the overall decision risks.
With the dynamic updating of global statistical information, we add the selecting features into the candi-
date feature subset, ignore the discarding features, cache the delaying features into the undetermined feature
subset, and wait for more information. Meanwhile, we perform the redundancy analysis for the candidate
features and uncertainty analysis for the undetermined features. Extensive experiments on eleven real-world
datasets demonstrate the efficiency and scalability of our new framework compared with state-of-the-art
algorithms.
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1 INTRODUCTION

Feature selection aims at selecting a minimal subset from the original datasets that can retain the
optimum salient characteristics necessary [11]. With the increase of data volume and dimension,
feature selection has become a fundamental and necessary technology for machine learning and
data mining [9]. Traditional feature selection methods assume that all the instances and features in
the target datasets can be required before learning. However, in some real-world applications, we
are more likely faced with data streams or feature streams, or both [8]. For example, in social media,
Twitter produces more than 500 million tweets every day, and numerous slang words (features)
are continuously being generated. In an industrial production line, the same product needs to go
through multiple processes, and different processes continue to generate various features for this
product. Online streaming feature selection deals with features arriving one by one over time while
the number of instances remains fixed [21]. There are two main challenges for online streaming
feature selection: (1) the entire feature space is unknown before learning; (2) the algorithm needs
to decide whether to retain or discard each new arriving streaming feature on the fly.

Generally speaking, features can be categorized into three disjoint groups, namely, strongly
relevant, weakly relevant, and irrelevant [6]. Strongly relevant features provide information for
the outcome in any context, while irrelevant features provide no information. Weakly relevant
features provide information for the outcome in some context. Yu and Liu [31] further divided
weakly relevant features into redundant and non-redundant features based on Markov blankets.
Ideally, feature selection methods aim at selecting all strongly relevant features, weak and nonre-
dundant features, and none of the irrelevant features. However, in practice, it is impossible to ap-
ply these definitions directly for high-dimensional datasets due to the curse of dimensionality [29].
Thus, most of the existing online streaming feature selection methods approximate the feature re-
lationships in terms of specific measurements and focus on the selection of the most informative
streaming features [5].

From the decision perspective, we consider online streaming feature selection as making de-
cisions for each new arrival feature to minimize the overall decision risks. In other words, we
wish the decision risk for each new arriving feature “as low as possible” [4]. Based on the philos-
ophy of “Thinking-in-Threes” that understanding and processing a whole through three distinct
and related parts [25] and the superiority of three-way decision [23], for each new arriving fea-
ture, we can make one of the following three decisions: selecting, discarding, or delaying. Suppose
¥Yr(d) € [0,1] denotes the membership grade between feature f and decision class d. With a pair
of thresholds @ and f, each feature f can be classified into one of the following three regions:
discarding (0 < yr(d) < @), delaying (@ < yr(d) < f), and selecting (f < ys(d) < 1), shown as
Figure 1. Meanwhile, we use the membership grade as a measurement to approximate and classify
the features into three disjoint groups: strongly relevant, weakly relevant, and irrelevant. In other
words, we select strongly relevant features and discard irrelevant features. For weakly relevant fea-
tures, we delay making the decisions and wait for more information. Without the information of
the entire feature space, the three-way decision can reduce the risk for weakly relevant streaming
features. Meanwhile, with the dynamic adjustment of @ and f, we can make decisions for each new
arrival feature with low risk. As far as we know, this is the first work considering online streaming
feature selection from a decision-making perspective.
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Fig. 1. The three regions of selecting (strongly relevant), discarding (irrelevant), and delaying (weakly rele-
vant) in terms of feature membership degree and two thresholds a and f.

During online streaming feature selection, suppose we get a new arriving feature f; at times-
tamp t, and we should decide to retain or discard it on the fly. Theoretically, we can store all the
streaming features and do not discard anyone. However, the storage space of the machine running
the algorithm is always limited. Meanwhile, irrelevant and redundant features can be discarded
directly, and it is unnecessary to store these useless features. Besides, it will take much more run-
ning time as more and more features are stored and be used in the algorithm. Therefore, unlike
traditional feature selection methods that can compare features many times, the discarded features
in online streaming feature selection cannot be required and used again. Thus, most of the exist-
ing online streaming feature selection methods select features in individual feature information or
compare features in pairs. Meanwhile, with the tremendous growth in the instances and dimen-
sionalities of datasets, the scalability of the feature selection algorithm is crucial. For a scalable
online streaming feature selection method, the running time, and the number of selected features
should have a linear or sublinear relationship with the dimensionality of the target datasets while
maintaining a satisfactory performance on the final selected features. However, most of the exist-
ing streaming feature selection methods focus on the performance of final selected features and
ignore the scalability on running time and number of selected features, which is significantly es-
sential for very large-scale and streaming datasets.

Motivated by this, we propose a new Online Scalable Streaming Feature Selection frame-
work from a Dynamic Decision perspective, (OSSFS-DD), shown as Figure 2. To minimize
the overall decision risks during online streaming feature selection, we try to select the most in-
formative features and delay making decisions for undetermined features. Based on the idea of a
three-way decision, OSSFS-DD updates the values of & and f in terms of the global statistical infor-
mation that can control the size of the candidate feature subset and undetermined feature subset
linear to the dimensionality of the target datasets. Meanwhile, in terms of the information theory
[18, 37], we discard redundant features in the candidate feature subset if the joint information of
two features (the information of each feature is bigger than f) is small than 2 = f. If two features
(the information of each feature is smaller than f) in the undetermined feature subset provide an
information bigger than 2 % 5, we move these two features from the undetermined feature subset
into the candidate feature subset. Our main contributions can be summarized as follows:

— We first give the formal definition of the online streaming feature selection problem from the
decision-making perspective. Regarding the philosophy of “Thinking-in-Threes”, we classify
each new streaming feature into selecting, discarding, or delaying. As far as we know, this
is the first attempt to handle this problem via dynamic decisions.

— We propose a new online scalable streaming feature selection framework via dynamic de-
cisions to minimize the overall decision risks. With the dynamical update of global statisti-
cal information, we adjust the thresholds dynamically that guarantee the selected features
are the most informative ones and the size of the candidate feature subset linear to the
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Fig. 2. Our new online scalable streaming feature selection framework via dynamic decisions. For each new
arriving streaming feature f, we make one of the following three decisions: selecting, discarding, or delaying.

dimensionality of target datasets. Meanwhile, to compact the selected features, we discard
the redundant features in the candidate feature subset and move features from the undeter-
mined feature subset into the candidate feature subset with uncertainty analysis.

— Extensive experiments on eleven real-world datasets indicate the effectiveness and scalabil-
ity of our proposed method compared with seven state-of-the-art streaming feature selection
algorithms.

The rest of this article is organized as follows. Section 2 describes the related work. Section 3
gives the problem formalization from the decision-making perspective and proposes a new scalable
framework to handle it. Experimental analyses are presented in Section 4. Finally, Section 5 makes
a brief conclusion.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 87. Publication date: March 2022.



Online Scalable Streaming Feature Selection via Dynamic Decision 87:5

2 RELATED WORK

In terms of different selection strategies, feature selection methods can be broadly categorized as
the filter, wrapper, and embedded [3]. Filter methods evaluate the feature importance according to
specific criteria independent of any learning algorithms, while wrapper methods evaluate the se-
lected features’ quality with a predefined learning algorithm. Embedded methods perform feature
selection in the process of model construction. With the rapid increase in data, feature selection
became more and more important in machine learning and data mining. For example, in Web ser-
vice, a covering-based quality prediction method was proposed via neighborhood-aware matrix
factorization and was validated on a real-world dataset containing 1,974,675 Web service invoca-
tion records [32]. Meanwhile, the dimensionality is extremely high for some big data real-world
applications, and the features may exist in a stream mode. For streaming feature selection, we can-
not require all the features before learning. Thus, most of the existing streaming feature selection
methods are designed in filter mode [5].

Specifically, Grafting [15] was the first online streaming feature selection method that is based
on the stagewise gradient descent and treats feature selection as an integral part of learning a
predictor within a regularized framework. Alpha-investing [33] was a method based on stream-
wise regression for online feature selection and used the penalized likelihood ratio to measure the
relevance for the new arriving features. Wu et al. [21] presented two algorithms (OSFS and fast-
OSFS) that contained two major steps: online relevance analysis (discarding irrelevant features)
and online redundancy analysis (eliminating redundant features) in terms of the conditional in-
dependence/dependence test. Li et al. [7] proposed two methods at the group and individual fea-
ture levels, respectively, by exploiting entropy and mutual information in information theories.
Yu et al. [29] proposed the SAOLA approach for high-dimensional data that employed novel on-
line pairwise comparison techniques to maintain a parsimonious model over time in an online
manner based on the mutual information theory. For multilabel streaming feature selection, Lin
et al. [10] introduced fuzzy mutual information to evaluate the quality of features and designed ef-
ficient algorithms to conduct multilabel feature selection when the feature space is completely
known or partially known in advance. Rahmaninia et al. [17] proposed two online streaming
feature selection methods, named OSFSMI and OSFSMI-k, for evaluating the relevancy and re-
dundancy of features in terms of the mutual information in a streaming manner. Wu et al. [19]
focused on the problem of online feature selection from capricious streaming features and pro-
posed a new method that adopts latent factor analysis to preprocess capricious streaming fea-
tures for completing their missing entries before conducting feature selection. SFS-FI [37] con-
sidered the interaction between features during online streaming feature selection and proposed
a new method that can select features to interact with each other. Although the above meth-
ods are based on different technologies for online streaming feature selection, most of them in-
clude relevant feature selection and redundant feature removal components. Inspired by this, our
new framework also considers the relevance and redundancy between features during online
feature selection.

Besides, considering the most critical advantages that do not require any domain knowledge
other than the given dataset, many researchers have begun applying the Rough Set theory for
streaming feature selection. More specifically, based on the classical Rough Set model, Eskandari
et al. [2] proposed a new method for online streaming feature selection that considers both the
boundary and positive regions and uses a noise-resistant dependency measure to search for
reduces. Zhou et al. [34] proposed a k-nearest neighborhood relation-based online streaming
feature selection method from the Neighborhood Rough Set perspective for high-dimensional
and class-imbalanced data. Liu et al. [13] proposed a new feature selection framework based
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on neighborhood Rough Set that can solve online streaming feature selection and multi-label
feature selection simultaneously. OFS-A3M [36] was a new non-parametric streaming feature
selection method based on the gap neighborhood relation for streaming feature selection that
aims at selecting features with high correlation, high dependency, and low redundancy. Zhou
et al. [35] proposed the OFS-Density method based on adaptive density neighborhood relation
that can select features with high relevance and low redundancy. Most of these Rough Set-based
methods use the dependence degree to measure stream features with high time complexity. These
Rough Set-based methods have demonstrated the effectiveness of applying Rough Set theory
for the problem of online streaming feature selection. However, all these algorithms have a
common shortcoming of high time complexity. Therefore, we attempt to design an efficient online
streaming feature selection framework in this article.

Recently, some new works have studied the online streaming feature selection from other per-
spectives. For example, GF-CSF [19] conducted online feature selection from capricious streaming
features, where features flow in one by one with some random missing entries while the number
of data instances remains fixed. I-SFS and G-SFS [14] were two streaming feature selection meth-
ods for multi-label datasets where the multiple labels are reduced to a lower-dimensional space.
These two methods grouped the similar labels before performing the selection method to improve
the selection quality and make the model efficient. LOSSA [20] was a latent-factor-analysis-based
online sparse-streaming-feature selection algorithm, which aims at implementing online feature
selection from sparse streaming features. OCFSSFs [27] was an online causal feature selection
method for streaming features through mining Markov blanket containing PC (parents and chil-
dren) and spouses.

Nevertheless, all these methods mentioned above are not scalable to running time and selected
features simultaneously. Therefore, this article tries to consider the problem from the decision-
making perspective and use global statistic information to select a scalable ratio of the most infor-
mative features.

3 THE PROPOSED METHOD

This section first gives the formal definition of online streaming feature selection from the dynamic
decision perspective. Then, we present a brief introduction of different feature relationships and
the idea of a three-way decision. After that, we propose our new OSSFS-DD framework and point
out three main issues that need to be solved during online streaming feature selection. We discuss
our new framework in detail at last.

3.1 Problem Definition

Let F = {fili = 1,...,T} be a sequence of streaming features, where f; = [xi,x},...,x}]T isa

1’ 27 2

pattern of n samples received at the ith timestamp. d = [y, v, ...,y,]" is the observed decision
class of the n samples, where y; is the class label. At timestamp ¢, we get a new feature f; and should
decide whether retain or discard f; on the fly. Meanwhile, for discarded features, we cannot use

and select them again.

Definition 1 (Online Streaming Feature Selection from Decision-making Perspective). Suppose
E(f) is a decision evaluation function on feature f, E(-) € [0,1], 0 < @ < f < 1. For stream-
ing feature f; at timestamp ¢, there are three-way decisions defined as follows:

(1) Selecting region: SEL (4, 5y = { fIE(f) = B};

(2) Discarding region: DIS(,, gy = { fIE(f) < a};

(3) Delaying region: DEL(4, gy = {fla < E(f) < B};
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Online streaming feature selection aims at making decisions for each streaming feature that
minimize the overall decision risks

Min Z [1-E(f)]. (1)

ft€F

As we know that, feature selection is an NP-hard problem [12]. Therefore, most feature selec-
tion methods adopt greedy strategies and try to choose the best features at each round. From the
decision-making perspective, we can consider online streaming feature selection as a series of
dynamic decisions that aim at minimizing the overall decision risks.

For a dataset D, suppose the feature set is C, and the decision class is d. Each feature f in C
can be categorized into three disjoint groups: strongly relevant, weakly relevant, and irrelevant as
follows [6].

Definition 2 (Strong Relevance, Weak Relevance, and Irrelevance). Given nonempty feature set C
and decision class d, for each f € C,

— f is strongly relevant to d, iff VS € C\{f} s.t. P(d|S) # P(d|S, f).
— f is weakly relevant to d, iff it is not strongly relevant, and S ¢ C\{f} s.t. P(d|S) # P(d|S, f).
— f isirrelevant to d, iff it is neither strongly nor weakly relevant, and VS C C\{f} s.t. P(d|S) =

P(dlS, f).
where P(d|S) denotes the posterior probability of d condition on S.

Based on Markov blankets, Yu and Liu [31] further divided weakly relevant features into redun-
dant and non-redundant features. Ideally, feature selection aims at selecting all strongly relevant
and weakly non-redundant features. However, due to the curse of dimensionality, it is impossible
to apply these definitions directly. Thus, a commonly used method is to approximate the relation-
ship through specific feature membership measurements.

Suppose yr(d) € [0, 1] denotes the membership grade between feature f and decision class
d. With a pair of thresholds ¢ and f (0 < & < f < 1), we can classify features into three dis-
joint regions, as shown in Figure 1. Specifically, we discriminate different feature relationships via
membership grade as follows:

Definition 3. Given nonempty feature set C and decision class d, for each f € C, yr(d) € [0,1]
denotes the membership grade between f and d. With a pair of thresholds @ and f (0 < o < f < 1),
we consider:

— f is strongly relevant to d, if § < yr(d) < 1;
— f is weakly relevant to d, if @ < yr(d) < p.
— fisirrelevant to d, if 0 < yr(d) < a.

Thus, in terms of Definition 3, we can classify each new arriving streaming feature based on a
specific feature membership metric.

In general, selecting strongly relevant and weakly non-redundant features is “low risk” during
feature selection. On the contrary, selecting irrelevant and redundant features will bring high risks
to the final performance. In this article, we use R(f) = 1-yr(d) to measure the risk of each stream-
ing feature. Thus, for streaming feature selection, we aim at maximizing the overall membership
degrees as follows:

Max Z Yr(d). (2)

ft€F
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3.2 Our New Framework

During online streaming feature selection, the discarded features cannot be used and selected again.
Thus, for weakly relevant features, there are considerable risks in making the decision (selecting or
discarding) immediately. Three-way decision is a philosophy of thinking in threes, a methodology
of working with threes, and a mechanism of processing through threes [24]. Furthermore, Yao
[25] proposes the trisecting-acting-outcome (TAO) model of three-way decision as (1) to divide
the whole into three parts, (2) to devise strategies to process the three parts, and (3) to optimize a
desirable outcome. Inspired by the idea of “Thinking-in-Threes” and the superiority of three-way
decision [23], we make one of the three decisions (selecting, discarding, and delaying) for each
new arriving feature, as shown in Figure 2.

In general, for each new arriving feature f;, if f; is a strongly relevant feature, we add it into the
candidate feature subset Sc; If f; is an irrelevant feature, we discard it directly; If f; is a weakly
relevant feature, we add it into the undetermined feature subset Sy7, and wait for more information
to make the decision. Thus, our new online streaming feature selection framework can achieve
“low risk” for each new arriving feature with these three strategies.

As shown in Figure 2, there are three main issues that need to be solved during online streaming
feature selection: (1) how to choose proper thresholds of @ and f that can decrease the decision
risk for each new arriving feature; (2) how to remove redundancy for the accepted features in Sc¢;
(3) how to deal with the features in the undetermined feature subset Sy .

In this article, we use Normalized Mutual Information(NMI) to calculate the membership
score between discrete features as

2MI(X,Y)
H(X) + HY)’

where MI(X,Y) denotes the mutual information between X and Y, H(X) and H(Y) denote the
entropy of X and Y, respectively [18]. Thus, NMI(f, d) is the membership score between discrete
feature f and the decision class d, where 0 < NMI(f;d) < 1. For features with continuous values,
we adopt the best-known measure of Fisher’s Z-test [16] to calculate the membership scores. In a
Gaussian distribution Normal(y, ¥), the population partial correlation P(f;, Y|S) between feature
fi and the feature Y given a feature subset S is calculated as follows:

—((Zpvs) Dry
((ZﬁYS)_l)fif,- ((Zf,—YS)_l)YY '

In Fisher’s Z-test, under the null hypothesis of conditional independence between f; and Y given
S, P(fi,Y|S) = 0. With the given significance level o and the p-value returned by Fisher’s Z-test
p, under the null hypothesis of the conditional independence, if p > «, f;, and Y are uncorrelated,;
otherwise, if p < a, f;, and Y are correlated to each other. For simplicity, we use I(f;d) to denote
the membership degree of NMI(f;d) for discrete feature f in the next.

NMI(X,Y) = 3)

P(fi,YIS) =

©

3.2.1 Thresholds Update. Assume that the data in the target dataset obey a normal distribution,
and the streaming features arrive at random. Then, the membership scores of all features in the
whole feature space should obey a normal distribution too, where p and o denote the mean value
and the standard deviation, as shown in Figure 3.

We use NMI to calculate the value of each feature in Datasets SRBCT, LYMPHOMA, LEUKEMIA,
and BREAST (shown in Table 1), and divide the value range of the entire feature space into 50 equal
intervals. Figure 4 shows the distribution of the NMI on these four datasets, where each bar denotes
the number of features in the value range. The membership scores NMI obey a normal on these
datasets.
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Fig. 3. A normal distribution. With different k; and kz, we can make the selected features in the most infor-

mative regions statistically.
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Fig. 4. The distribution of NMI on Datasets SRBCT, LYMPHOMA, LEUKEMIA, and BREAST. The NMI mem-
bership scores on features obey a normal distribution on these datasets.

We choose the values of @ and f as u + k = o, where k = +1, £2, +3 denote the middle region
is about 68%, 95%, and 99.7% [26]. In other words, without considering redundancy, for streaming
feature f;, if I(fi;d) > (u+2%0), f; is the 2.5% most informative features and the risk of selecting

ft will be lower than the other 97.5% features.
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We cannot know the mean value and standard deviation of the whole feature space for online
streaming feature selection before learning. Thus, without the information of the entire feature
space, these two thresholds («, f) cannot be fixed in advance. However, we can update y and o
using each new arriving feature.

THEOREM 1. At timestamp t — 1, suppose the mean value isu;_, and the standard deviation is oy_;.
For the new arriving feature f; at timestamp t, suppose the membership degree is y;. Then we can
update the mean value and the standard deviation as follows:

Yo — Hi—1
EE— ®)

= l;q +
He = Hi-1 :

o \/(t —2) 502+ (e = ) (v — )

6
P— (6)
PROOF 1. f1y = Zfztl Yi _ Zﬁitym S LG R 2

i1 : _
Suppose F; = Yi_ (yi — p¢)* then 02 | = Z”l(i_zﬂt ) = %21
Fy = Fny = Eicy (vi = p)? = Zisi (vi = per)’

= i (vi = pea + He-1 — ,Ut)z - X i — pe)?
= (ye—p—1)* + i= 1()/1 Hee1)? +2(pr—1 = r) Zfﬂ(}’i —He1) + Zfﬂ(ﬂt—l — )= ltll(}’i — pir-1)?
= (ye = pe-1)* + 2(pe1 = pe)(nox iy = nok preog) + s (eey = pe)

Substituting Equation (1) and simplification can be obtained: F,, — F,—1 = (yy — tr—1)(yr — fe)-

Thus, 0; = \l \/(t 2)*o; +(Yt po)ye—pe)

Thus, in terms of Equations (5) and (6), we can dynamically update y and o during the online
streaming feature selection with each new arriving feature f;. Meanwhile, we dynamically update
the values of « and fas @ = g+ k; = o,and f = p + ky * o, respectively. Therefore, with
different values of k; and k,, we can make the number of selected features scalable to the number
of dimensions for different datasets.

3.2.2  Redundancy Analysis. For high-dimensional datasets, there always contain a lot of redun-
dant features. Thus, it is necessary to analyze the redundancy for the selected features. In terms
of information theory, we can analyze the redundancy among three features. For more than three
features, it is impossible to do the redundancy analysis because of the exponentially increasing
complexity. Specifically, for features fi, f2, and decision class d, if

I({fi. fal:d) < I(fi3d) + I(f2; d), ™)
we consider that there is a redundancy between f; and f; on d. In other words, if the information

of {1, f2} is less than the sum of each feature, f; and f> must contain some common information.

THeOREM 2. IfI(f2;d|f1) < I(f2;d) orI(f1;dlf2) < I(f1;d), then fi and f, are redundant features
ond.

Proor 2. I({f1, f2};d) = I(f1;d) + I(f2;d|f1) = I(fa;d) + [(f1;d| f2).  I(f2;d| fi) < I(fz;d) or
I(f1;d| f2) < I(fi1;d), I({ f1, f2};d) < I(fi;d) + I(f2;d). Thus, f; and f, are redundant features on d.

On the condition of f;, if the information between f; and d decreases, there must exist redun-
dancy between f; and f; on d. Combined with the dynamic threshold B, we check the redundancy
between two features (fi, f2 € Sc) in the candidate feature subset if

I({f1, fa}; d) < 2. ®)
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THEOREM 3. If f1, fo € S, I({fi, fo}:d) < 2B, then I(fy;d|f) < B and I(fi:d|fy) < B.

Proor 3. I({f1, fo}:d) = I(fisd) + [(f;dlfy) = I(fe:d) + I(fi;dlfo) < 2. For fi,fo € Sc,
I(fi;d) > pand I(fy;d) > B. Thus, I(f:d| fi) < fand I(fi;d|f2) < B.

In other words, for two features fi, f> in the candidate feature subset S¢, the individual infor-
mation of both two features is bigger than . However, if the combined information of these two
features is smaller than 2 * f§, which means on the condition of one feature (e.g., f;), the informa-
tion of the other feature (I(f2;d|f1)) will decrease and be smaller than f. Thus, we should remove
one of these two features (the smaller one between I( fi; d) and I(f2; d)) from the candidate feature
subset.

Once our new framework selects a new streaming feature during online streaming feature selec-
tion, we can check the redundancy between this new feature and the currently selected features.
For example, suppose the size of the currently selected feature subset is |S¢[, then the time com-
plexity of redundancy analysis is O(|Sc|?/2). In the previous section, we analyzed that the size of
Sc is scalable to the number of dimensions by the dynamical parameter adjustment.

3.2.3 Uncertainty Analysis. If the membership degree of a new arriving feature is between o
and f, it will be added into the undetermined feature subset Sy and wait for more information.

At timestamp i, suppose the new arriving feature is f;, and a < I(f;;d) < B. Thus, f; will be
added into Sy . If there exists a feature f;(f; € Sy) that makes

I({fi. fi}: d) = 2P, ©)

then we can select both f; and f; into the candidate feature subset Sc. In other words, if the
combined information of two features in the undetermined feature subset is bigger than 2/, both
these two features will be considered as candidate features.

THEOREM 4. If fi, f2 € Su, I({f1, f2};d) > 2B, then I(fo;d| f1) > I(f2;d) and I(fi1;d|f2) > I(f1;d).

Proof 4. I({ f1, fa};d) = I(f1;d) + I(f;dlf1) = I(f2;d) + I(f1;d|fz) > 2B. For fi, f» € Su,
I(f1;d) < pand I(f2;d) < B. Then, I(f2;d|f1) > B > I(f2;d) and I(f1;d|f2) > B > I(fi;d).

In other words, for two features fi, f> in the undetermined feature subset Sy, the individual
information of both two features is smaller than 5. However, if the combined information of these
two features is bigger than 2 * f, which means on the condition of one feature(e.g., f1), the infor-
mation of the other feature (I(f3;d|f1)) will increase and be bigger than f. Then, both these two
features can be moved into the candidate feature subset.

There may be many noncommitment features for high-dimensional datasets, and we cannot
keep these features all the time. Thus, we should flush Sy regularly when the size of Sy reaches
the threshold Ng,,. In other words, for features in Sy; that cannot satisfy the Equation (9), they will
be discarded directly during the feature subset flushing. The time complexity of undetermined
analysis is O(NSZU /2).

3.24 The Proposed Framework. Based on these three solutions mentioned above, we propose
a new scalable online streaming feature selection framework via dynamic decision, named OSSFS-
DD, as shown in Algorithm 1.

Specifically, at timestamp ¢, OSSFS-DD gets a new streaming feature f;. In Step 4, OSSFS-DD
calculates the membership degree yy, (d), and updates the values of , o in terms of Equations (5)
and (6). Then OSSFS-DD gets the dynamical threshold values of « and f in Step 5. For yy, (d) and
(@, B), there are three different processings. (1) I y, (d) < «, f; will be discarded directly in Step
7. (2) If y;,(d) > B, f; will be added into the candidate feature subset Sc in Step 9. Meanwhile,
OSSFS-DD removes redundant features in Sc that satisfy Equation (8). (3) If & < yy, (d) < B, f; will
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ALGORITHM 1: The OSSFS-DD framework
Require:
Input: decision class d;
Parameters: ki, ky, N
Ensure:
Sc: the selected feature subset;
1: Initialization: y=oc =a==0,Sc =Sy = {}
2: Repeat
3:  geta new streaming feature f; at timestamp t;

4 calculate yf, (d), and update p, o in terms of Equations (5) and (6);
55 a=p+kiro, f=pu+kyxo;

6: IFyn(d) <a

7: discard f;;

s  ELSEIFy;,(d) > f

o: Sc =Sc U{fil;

10: discard redundant features in Sc in terms of Equation (8);

11:  ELSE

12: Sy =Sy U {ft}:

13: IF |5U| ==N

14: move features from Sy into S¢ in terms of Equation (9), empty Sy;
15: END

16:  END

17: Until no features are available;
18: Output: selected feature subset S¢

be added into the undetermined feature subset Sy; in Step 12. Besides, if the undetermined feature
subset Sy is full (|Sy| == N), OSSFS-DD checks whether there exist some features in Sy that
satisfy Equation (9) and moves them into the candidate feature subset Sc. For the other features in
Su, there will be discarded directly. When there are no more features to arrive, OSSFS-DD return
the final selected features in Sc.

3.3 Algorithm Analysis

Suppose the total number of features is m for the target dataset. Then, as a scalable online streaming
feature selection framework, the running time and number of selected features should be linear or
sublinear to m.

On running time, OSSFS-DD first calculates the membership degree between the new arriving
feature and class labels and then uses the calculation to update the statistical information and
compare it with the dynamically updated thresholds. The time complexity is O(1) from Step 1 to
Step 3. Then, OSSFS-DD compares the membership degree with the dynamical parameter values
from Step 4 to Step 14. Step 8 removes the redundant features from the candidate feature subset,
and the time complexity is O(|S¢|?/2). Step 10 to Step 13, OSSFS-DD checks whether some features
can be moved from the undetermined feature subset into the candidate feature subset when the
undetermined feature subset S is full. The time complexity of uncertainty analysis is O(|Sy|%/2).

Because of the dynamic threshold adjustment, the number of selected features can be statistically
controlled within a certain range. Suppose we set &« = 1+ 2 * o and f = p + 3 * o for OSSFS-
DD. Then, statistically, the maximum size of S¢ is about 0.15% * m, and the maximum size of Sy
is around 2.35% * m. Then, the maximum number of selected features is 2.5% * m and the time
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Table 1. Real-world Datasets

Index Data Set Instances Features Classes Feature Type
1 SRBCT 63 2,308 4 Real

2 LYMPHOMA 62 4,026 3 Real

3 PROSTATE 102 6,033 2 Real

4 LEUKEMIA 72 7,129 2 Real

5 DLBCL 77 7,129 2 Integer
6 ARCENE 200 10,000 2 Integer
7 DEXTER 600 20,000 2 Integer
8 BREAST 97 24,481 2 Real

9 MADELON 2,600 500 2 Integer
10 GINA 3,468 970 2 Integer
11 GISETTE 7,000 5,000 2 Integer

complexity of OSSFS-DD is about 0.03% * m?. Thus, OSSFS-DD is very efficient on running time
and scalable on the number of selected features.

4 EXPERIMENTS
4.1 Experiment Setup

4.1.1 Datasets. This section applies the proposed online streaming feature selection method
and competing algorithms on eleven real-world datasets [22, 30],! as shown in Table 1.

4.1.2  Evaluation Metrics. We use three basic classifiers, KNN (k = 5), SVM(with the linear ker-
nel) and CART in Matlab, to evaluate a selected feature subset in our experiments. We perform
5-fold cross-validation on each data set where feature selection is training on 4/5 data samples and
testing on the rest 1/5 data. All competing algorithms use the same training and testing data for
each fold. The order of streaming features is random for each dataset. We run each dataset ten
times and report the average prediction accuracy, running time, and the mean number of selected
features.

To further analyze the performance of OSSFS-DD against its rivals, we conduct the Friedman test
at a 95% significance level under the null-hypothesis to validate whether OSSFS-DD and its rivals
have a significant difference. If the null-hypothesis at the Friedman test is rejected, we proceed
with the Nemenyi test as a post-hoc test [1].

4.1.3 Comparing Algorithms. We compare OSSFS-DD with seven state-of-the-art streaming fea-
ture selection methods, including: Alpha-investing [33], Fast-OSFS [21], SAOLA [29], OSFSMI [17],
GFSSF [7], OFS-Density [35] and OFS-A3M [36]. The significance level « is set to 0.01 for Fast-OSFS,
OSFSMLI, and SAOLA. For Alpha-investing, the parameters are set to the values used in [33]. All
these algorithms mentioned above are implemented in MATLAB [28].2

4.1.4 Computational Device. All experimental results are conducted on a PC with AMD 3700X,
3.6 GHz CPU, and 32 GB memory.

!Public available at http://www.cs.binghamton.edu/~lyu/KDD08/data/, and http://archive.ics.uci.edu/ml/index.php.
2public available at https://github.com/kuiy/LOFS, and https://github.com/doodzhou/OSFS.
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Fig. 6. Running time and mean number of selected features varying with different values of (k1, k2).

4.2 Parameter Analysis

In Section 3.2.1, we have analyzed that the values of @ and ff can be chosen as i + k*¢. Statistically,
there are three cases of k that are often be used, where k = 1, 2, 3 denote the middle region is about
68%, 95%, and 99.7%, respectively. To reduce the running time and select a more compact feature
subset, we specify & = y + ky * 0 and f = p + k; * 0. Meanwhile, we only need to analyze three
pairs of parameters (k1,k2) as (1, 3), (2,3), and (1, 2), where k1 must be smaller than k2. Besides,
Ns,, is the maximum size of the undetermined subset, and it has little effect on the results of our
algorithm, as long as its value is not too small. Therefore, we set N5, = 100 for OSSFS-DD as
an empirical value in the experiments. In general, it does not need the information of the whole
feature space to set the parameters for our new algorithm. The predictive accuracy on KNN, SVM
and CART varying with different values of (ki, k2) on these datasets can be seen as Figure 5. The
running time and the mean number of selected features varying with different parameter values
can be seen as Figure 6.

The p-values of the Friedman test on KNN, SVM, CART, running time, and mean number of
selected features are 0.0027, 0.0164, 0.6909, and 1.8693e-08, 4.9013e-09, respectively. Thus, there is
a significant difference among these three cases on the predictive accuracy with KNN and SVM,
running time, and mean number of selected features. Meanwhile, there is no significant difference
among these three cases on predictive accuracy with CART. According to the Nemenyi test, the
value of critical difference (CD) is 0.9980. We list the average ranks in Table 2.

From Figure 5, Figure 6, and Table 2, we have the following observations:
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Table 2. The Average Ranks Varying with Different Values of k1, ka

(k1,k2) = (1,3) (ki k2) = (2,3) (k1. k) = (1,2)

KNN 2.5000 2.2273 1.2727
SVM 2.2273 2.4091 1.3636
CART 2.0000 2.1818 1.8182
Running Time 2.7273 1.0000 2.2727
Mean Number of Selected Features 1.2273 1.7727 3.0000

— On predictive accuracy, according to the statistical test, (ki,kz) = (1,2) gets the best
performance in cases of KNN, SVM, and CART. There is a significant difference between
(k1,k2) = (1,2) and (ky, k2) = (1,3)(2,3) on predictive accuracy with KNN and SVM. Mean-
while, there is no significant difference between (ki, k;) = (1,3) and (k1,k2) = (2,3). The
bigger value of k,, the fewer number of features can be make the decision “acceptance” di-
rectly. If k, = 3, ideally and statistically, only 0.15% of features can be added into the can-
didate feature subset directly. For real-world applications, this ratio may be much lower.
Thus, (k1,k2) = (1, 2) gets higher accuracy than the other two cases, especially on datasets
LYMPHOMA(2) and ARCENE(6).

— On running time, a lower value of k; means more features to be considered in the undeter-
mined analysis, while a lower value of k; indicates more features in redundancy analysis.
Both two smaller values will lead to more time-consuming. In Figure 6(a), (k1,k2) = (1,3)
spends more running time than (k1, k2) = (1,2) on most of these datasets for the big size
of undetermined feature subset. However, on dataset BREAST(8), (ki, k2) = (1, 2) consumes
much more time than (k, k;) = (1, 3). For dataset BREAST, the NMI values of the features
are very close, leading to a big candidate feature subset and the frequent refreshing of the
undetermined feature subset. Both these two analyses will consume much running time.

— On the number of selected features, (ki,k;) = (1, 2) selects more features than the other
two cases on all these datasets. Statistically, (k, ko) = (1, 2) will select 2.5% features into the
candidate feature subset and 13.5% features into the undetermined feature subset. However,
due to the redundancy analysis and undetermined analysis, the final number of selected
features will be smaller than 16% of the whole feature space.

In general, (k1,k2) = (1,2) considers more features than the other two cases and gets better
performs on predictive accuracy. Meanwhile, (kq, k) = (1, 2) consumes more running time than
the other two cases on average. In the next experiments, we specific (ki, kz) = (1, 2).

4.3 OSSFS-DD vs. State-of-the-art Online Streaming Feature Selection Methods

Tables 3-5 summarize the predictive accuracy of OSSFS-DD against the other seven algorithms us-
ing the KNN, SVM, and CART classifiers. Tables 6 and 7 show the running time and the mean num-
ber of selected features, respectively. The p-values of the Friedman test on KNN, SVM, CART, run-
ning time, and the mean number of selected features are 5.5796e-07, 6.5954e-05, 0.0012, 1.1942e—
09, and 4.5940e-06, respectively. Thus, there is a significant difference among these competing
algorithms respectively on predictive accuracy, running time, and the number of selected features.
According to the Nemenyi test, the value of CD is 3.1684. Figure 7 shows the statistical test of these
competing algorithms in cases of KNN, SVM, and CART.
From Tables 3-7 and Figure 7, we have the following observations:
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Table 3. Predictive Accuracy Using KNN as the Classifier

Data Set OSSFS-DD «-investing Fast-OSFS SAOLA OSFSMI GFSSF OFS-A3M OFS-Density
SRBCT 0.8972 0.3406 0.8483 0.865 0.8133  0.4566 0.8895 0.9308
LYMPHOMA 0.925 0.625 0.9417 0.9167 0.8833  0.7083 0.9667 0.95
PROSTATE 0.93 0.57 0.895 0.865 0.91 0.615 0.87 0.92
LEUKEMIA 0.95 0.7286 0.9357 0.9286 0.9 0.6321 0.9143 0.9321
DLBCL 0.93 0.75 0.8267 0.91 0.78 0.74 0.8767 0.8167
ARCENE 0.7638 0.6625 0.6875 0.6588 0.665 0.63 0.7913 0.795
DEXTER 0.8225 0.8675 0.7183 0.835 0.4983 0.66 0.7167 0.7967
BREAST 0.7 0.5421 0.6605 0.6737 0.6711  0.5658 0.6053 0.5895
MADELON 0.8063 0.647 0.5626 0.5595 0.6831  0.5038 0.5543 0.5171
GINA 0.8573 0.9227 0.8707 0.8067 0.786 0.6524 0.8441 0.816
GISETTE 0.8628 0.8397 0.8665 0.8391 0.5838  0.5942 0.8653 0.8757
AVG. 0.8586 0.6814 0.8012 0.8052 0.7430  0.6143 0.8085 0.8126
AVG. RANKS 2.1818 5.6364 3.5455 4.4545 5.4545  7.4545 3.9091 3.3636

The best results are highlighted in bold face in the tables.

Table 4. Predictive Accuracy Using SVM as the Classifier

Data Set OSSFS-DD «a-investing Fast-OSFS SAOLA OSFSMI GFSSF OFS-A3M OFS-Density
SRBCT 0.9769 0.2608 0.8881 0.9098  0.7825  0.4678 0.928 0.9231
LYMPHOMA 0.9417 0.6833 0.9083 0.9333  0.9167 0.7583  0.9583 0.9583
PROSTATE 0.9 0.59 0.885 0.83 0.91 0.59 0.86 0.92
LEUKEMIA 0.95 0.7679 0.9429 0.9321  0.9036  0.6536 0.9393 0.925
DLBCL 0.9467 0.78 0.8167 0.9067  0.8333  0.7633 0.8767 0.83
ARCENE 0.7513 0.6875 0.6775 0.6413  0.6775 0.64 0.7787 0.7713
DEXTER 0.8933 0.8642 0.6958 0.8483  0.5567  0.6825 0.7517 0.7708
BREAST 0.6632 0.6 0.7053 0.6658  0.6921  0.5816 0.5921 0.5711
MADELON 0.612 0.6128 0.6117 0.6009  0.6158 0.5092 0.5192 0.5347
GINA 0.8286 0.87 0.8441 0.8069  0.7748  0.6824 0.8134 0.8058
GISETTE 0.8995 0.9277 0.8204 0.841 0.8804  0.6632 0.8615 0.7776
AVG. 0.8512 0.69492 0.7996 0.8105  0.7766  0.6356 0.8071 0.7988
AVG.RANKS  2.2727 4.7727 4.3182 43636  4.5000  7.5909 3.7727 4.4091

The best results are highlighted in bold face in the tables.

Table 5. Predictive Accuracy Using CART as the Classifier

Data Set OSSFS-DD a-investing Fast-OSFS SAOLA OSFSMI GFSSF OFS-A3M OFS-Density
SRBCT 0.8601 0.293 0.8531 0.8147 0.8021  0.4448 0.8895 0.8804
LYMPHOMA 0.9083 0.6 0.8083 0.925 0.925 0.725 0.9083 0.9083
PROSTATE 0.875 0.59 0.89 0.855 0.9 0.565 0.85 0.88
LEUKEMIA 0.8393 0.7286 0.9107 0.8786 0.875 0.5893 0.9071 0.8929
DLBCL 0.8133 0.7033 0.79 0.8033 0.7933  0.6467 0.76 0.7867
ARCENE 0.7012 0.6363 0.6575 0.6125 0.6588 0.665 0.7438 0.725
DEXTER 0.8358 0.8567 0.7242 0.8242 0.8192 0.725 0.7442 0.7933
BREAST 0.6158 0.5711 0.6711 0.6132 0.6342  0.5342 0.6 0.5474
MADELON 0.7799 0.6276 0.5464 0.5343 0.65 0.5057 0.5435 0.512
GINA 0.8178 0.867 0.8394 0.7858 0.7606  0.6476 0.8066 0.7881
GISETTE 0.9287 0.9341 0.9029 0.8862 0.9209 0.7225 0.899 0.8784
AVG. 0.8159 0.6734 0.7812 0.7757 0.7944 0.6155 0.7865 0.7811
AVG. RANKS 2.9091 5.0909 3.8182 4.5909 3.5909 7.3636 4.0909 4.5455

The best results are highlighted in bold face in the tables.
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Table 6. Running Time (Seconds)

87:17

Data Set OSSFS-DD a-investing Fast-OSFS SAOLA OSFSMI GFSSF OFS-A3M OFS-Density
SRBCT 0.7607 0.0392 0.1866 0.2389 0.3017 0.2303 0.631 0.5671
LYMPHOMA 2.0213 0.1633 0.4413 0.829 1.639 0.7045 1.0567 1.1289
PROSTATE 1.9229 0.3202 0.462 0.6076 1.1464 1.645 2.9848 2.7309
LEUKEMIA 2.8202 0.4374 0.535 0.7767 1.1821 1.8329 2.1253 1.8987
DLBCL 2.8465 0.4767 0.5105 0.6631 1.1887 1.6636 2.2531 2.0382
ARCENE 4.6686 0.9416 0.9532 1.4379 3.0623 5.5925 12.2781 12.9937
DEXTER 0.3128 3.5849 14.1759 0.351 2,844.8914 0.5006 166.5361 165.5445
BREAST 23.8249 3.5185 1.4441 1.684 1.97 12.071 11.8465 13.3072
MADELON 0.0666 0.0488 0.0677 0.0394 0.0422 1.5712  175.7092 168.4572
GINA 0.455 3.0314 24.2839  0.2155 0.4018 10.6493 387.7432 434.7665
GISETTE 4.0412 171.79 8,340.5843 1.4731 1,568.2346 150.5005 8,963.0558  9,340.2829
AVG. 3.97 16.75 762.14 0.75 402.18 16.99 884.20 922.15
AVG. RANKS 5.5455 2.2727 3.1818 2.4545 4.3636 4.5455 6.8182 6.8182

The best results are highlighted in bold face in the tables.

Table 7. The Mean Number of Selected Features

Data Set OSSFS-DD ca-investing Fast-OSFS SAOLA OSFSMI GFSSF OFS-A3M OFS-Density
SRBCT 62.1 1.3 4.4 16.7 7.3 3 8.5 6.4
LYMPHOMA 6.3 1 49 22.1 8.2 2.8 3.9 10.2
PROSTATE 56.3 2.3 2.9 10.7 6.6 3.5 25.7 6.6
LEUKEMIA 73.55 2.55 49 21.15 8.65 3 7.45 5.9
DLBCL 40 4.5 4.45 14.9 7.15 3 20.05 49
ARCENE 33.65 6 5.65 17.45 8.2 5.15 40.3 33.1
DEXTER 56.7 13.9 2.6 11.3 19,8949 151 14.1 8.8
BREAST 600 5.3 4.6 18.15 7.45 3.2 32.5 12.4
MADELON 15.3 6.1 5.1 7.2 4.55 6.05 3.35 1.5
GINA 25.2 93.35 21.75 10.3 7.9 12.9 21.1 8.25
GISETTE 120.8 364.8 13.1 17.4 2,779.2 28.1 46.9 7.9
AVG. 99.0 455 6.7 15.2 2,067.2 7.8 20.3 9.6
AVG. RANKS 7.2727 3.4545 2.8182 5.5455  4.9545 2.8182 5.4545 3.6818
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Fig. 7. The statistical test graph of these competing algorithms.

— OSSFS-DD vs. Alpha-investing: On predictive accuracy, according to the results of the sta-
tistical test, OSSFS-DD performs better than Alpha-investing in cases of KNN, SVM, and
CART. Meanwhile, there is a significant difference between OSSFS-DD and Alpha-investing
on KNN. Alpha-investing is the fastest among all these competing algorithms on running
time, for it does not deal with redundancy between selected features. On the mean number
of selected features, Alpha-investing can only select the first one or two features for some
datasets, such as SRBCT, LYMPHOMA, and PROSTATE, which leads to the worst predictive
accuracy on these datasets among all these competing algorithms. Thus, Alpha-investing
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cannot handle all different types of datasets. For OSSFS-DD, the number of selected features
is scalable to the target datasets, ensuring the stability of performance.

— OSSFS-DD vs. Fast-OSFS: OSSFS-DD gets higher average predictive accuracy and lower aver-
age ranks than Fast-OSFS in cases of KNN, SVM, and CART. Thus, OSSFS-DD performs better
than Fast-OSFS on predictive accuracy. On running time, Fast-OSFS is faster than OSSFS-DD
on most of these datasets. However, on dataset GISETTE, Fast-OSFS spends 8,340 seconds,
while OSSFS-DD only needs 4 seconds. Meanwhile, Fast-OSFS selects the fewest features
among all competing algorithms on all these competing datasets. Fast-OSFS considers fea-
tures individually in relevance and redundancy analysis and selects much fewer features
on these datasets, leading to some critical information loss. Thus, OSSFS-DD is more stable
than Fast-OSFS on running time and number of selected features while performing better
on Predictive accuracy.

— OSSFS-DD vs. SAOLA: According to the Nemenyi test, OSSFS-DD performs better than
SAOLA on predictive accuracy. On running time, SAOLA is faster than OSSFS-DD on most
of these datasets. On the mean number of selected features, SAOLA selects fewer features
than OSSFS-DD. SAOLA employs novel online pairwise comparison techniques that only
consider the feature relationships between two. However, with the full use of global statisti-
cal information, OSSFS-DD can always select the top informative features during streaming
feature selection, leading to superior predictive accuracy performance.

— OSSFS-DD vs. OSESMI: On predictive accuracy, OSSFS-DD performs better than OSFSMI
in cases of KNN, SVM, and CART. On running time, OSFSMI spends much more time than
OSSFS-DD on average. On datasets DEXTER and GISETTE, OSFSMI spends 2,844 seconds
and 1,568 seconds , while OSSFS-DD only needs 0.3 seconds and 4.0 seconds , respectively.
On the mean number of selected features, OSFSMI selects 2,067 features on average. On
datasets DEXTER and GISETTE, OSFSMI selects 19,894 and 27,79 features while getting
worse performance on predictive accuracy than OSSFS-DD. Thus, OSSFS-DD is more stable
than OSFSMI and can handle different datasets well.

— OSSFS-DD vs. GFSSF: GFSSF performs the worst on predictive accuracy among all these
competing algorithms. Meanwhile, there is a significant difference between OSSFS-DD and
GFSSF in cases of KNN, SVM, and CART. Thus, OSSFS-DD significantly performs better than
GFSSF. On running time, OSSFS-DD is comparable with GFSSF. On the mean number of se-
lected features, GFSSF selects much fewer features than OSSFS-DD. GFSSF is an information
based method that can also be adapted to group streaming feature selection. However, the
relevance and redundancy analysis for GFSSF is too strict, leading to missing some important
features.

— OSSFS-DD vs. OFS-A3M: According to the average ranks, OSSFS-DD performs better than
OFS-A3M in cases of KNN, SVM, and CART. OFS-A3M is a neighborhood Rough Set-based
method with a high time complexity for large sample datasets. OSSFS-DD is faster than
OFS-A3M on running time, especially on big sample datasets, such as DEXTER, MADELON,
GINA, and GISETTE. Meanwhile, OFS-A3M uses the neighborhood information for feature
selection that can be significantly affected by the sample distribution. On the number of
selected features, OFS-A3M selects fewer features than OSSFS-DD on some datasets.

— OSSFS-DD vs. OFS-Density: OSSFS-DD gets higher predictive accuracy than OFS-Density,
with seven of eleven datasets on KNN, eight of eleven datasets on SVM, and six of eleven
datasets on CART. Like OFS-A3M, OFS-Density is also a neighborhood Rough Set-based
method and has a high time complexity for large sample datasets. On running time,
OFS-Density spends much more time than OSSFS-DD on average. On the number of se-
lected features, OFS-Density selects much fewer features than OSSFS-DD. OFS-Density uses
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neighborhood density information for feature selection that cannot handle unevenly
distributed data sets well.

In sum, OSSFS-DD gets the best performance on predictive accuracy in cases of KNN, SVM,
and CART. Meanwhile, OSSFS-DD is more scalable on running time and the number of se-
lected features than other competing algorithms. Due to the dynamic adjustment of thresholds,
OSSFS-DD can always select the most informative features and be scalable on the number of se-
lected features.

5 CONCLUSION

This article proposes a new online scalable streaming feature selection framework from the dy-
namic decision perspective for the first time. Based on the philosophy of “Thinking-in-Threes”, we
use a pair of dynamically adjust thresholds to classify each new arriving feature into selecting, dis-
carding, and delaying by the global statistical information. Meanwhile, we remove the redundancy
for the candidate features and add feature pairs in the undetermined feature subset. Extensive ex-
periments demonstrate the effectiveness and scalability of our new proposed method. This article
only checks the redundancy and joint information between two features in redundancy and un-
certainty analysis. In future work, we will consider the relationships for triples or more variables.
Besides, scholars can try to apply other dynamic decision-making ideas and methods to the online
streaming feature selection.
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